A Brief Overview of the Electric Resistance Welding Process

Atlas Tube, Inc. uses the Electric Resistance Welding (ERW) process to obtain a continuous longitudinal seam weld on the tube it produces. This process depends on a number of important factors to ensure a complete weld. The most important of these factors are:

- Strip width size
- Strip preparation through the mill forming and fin pass stands
- Induction of current in the strip and concentration of the current and resulting heating of the steel along the strip edges
- Presentation of the strip edges at the tube mill weld stand
- Squeeze out of the resultant molten metal.

Strip width size
Each size of tube produced has its own unique strip width. The strip width is calculated using various parameters including, finished tube size, tube wall thickness, radius of corners desired (for square and rectangular tubing) and theoretical squeeze out of molten metal at the weld head.

Atlas purchases steel coils from primary mill sources and slits the coils to width on its own slitters in-house. The strip width is controlled to +/- 0.020 inches.

Strip preparation
An integral part of obtaining a sound weld is to ensure the strip edges are prepared properly prior to welding. This is accomplished by passing the strip, which is by this time partially formed into a round section, through a series of rolls called fin passes. (Figure 1). The fin passes are designed to burnish the strip edges to clean them for welding and to ensure the edges are beveled to the proper angle to allow the strip edges to come together evenly. The strip edges must meet in such a manner that there is no gap at the top (outside of the tube) or bottom (inside of the tube). This ensures an even amount of extrusion, or squeeze out at the weld head (sometimes referred to as weld pressure rolls) and without mismatch. Mismatch occurs when one strip is higher or lower than the other when the two edges meet.

Figure 1: A typical fin pass roll.
Welding
Two methods of heating the strip edge are utilized in Electric Resistance Welding. One method is to induce current into the tube by contact shoes. The contact shoes are copper based contacts that allow the current to flow into the base metal to be welded. The contact shoes are located close to the strip edges prior to the weld pressure rolls. The second method utilizes a high frequency induction coil. (Figure 2.) This is a non-contact method of inducing the current into the strip. This is also located prior to the weld pressure rolls.

The current is concentrated onto the strip edges by means of an impeder. This impeder is a cluster of ferrite rods located inside the tube by means of a mandrel. Concentration of the induced current along the strip edges causes the strip edges to heat up. The amount of heat and resultant molten metal is computer controlled and is matched to the speed at which the steel is moving.

![Figure 2: The tube passing through the high frequency induction coil.](image)

At this time the steel moves through the weld head, or weld pressure rolls. (Figure 3) The weld pressure rolls now force the molten strip edges together. When the strip edges are forced together the molten metal is extruded out of the top and bottom of the strip and a metallurgical bond is created.

![Figure 3: The tube leaving the high frequency induction coil and passing through the weld pressure rolls.](image)
After the molten metal is extruded out of the weld area it is cut from the outside and if required the inside of the tube to leave a smooth flush surface. (Figure 4) A “first off” of the weld is inspected at each set up. The characteristics inspected are the amount of extrusion, the presentation of the strip edges, and complete bonding of the strip edges.

*Figure 4: The extruded metal being cut from the outside of the welded tube.*